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A variation-gradient method for solving the problem on optimization of the shape of blade cascades has been
developed and tested. This method is based on calculation of the gradient of the functional of the optimization
problem with the use of the parameters of a fluid flow varied relative to the design parameters determined
from the system of variation gasdynamic equations. The efficiency of the indicated method was tested, as com-
pared to the efficiency of the analogous gradient method in which the gradient of the functional of the opti-
mization problem is calculated using the finite-difference method, in solving concrete problems on optimization
of blade cascades. It is shown that the method proposed allows one to substantially decrease the time of de-
termining the extremum of the indicated functional.

Hydrodynamic cascades are used as models of turbo-machines (turbines, vane compressors, impeller pumps,
fans) when the problem on upgrading of the quality of these machines is being solved. Since it is precisely the char-
acter of hydrodynamic interaction of the hydrodynamic cascade of a turbo-machine with a fluid flow (which is mainly
dependent on the cascade geometry) that determines the quality of the turbo-machine, a pressing problem is the devel-
opment and improvement of methods for optimization of the shape of blade cascades.

At present, in the process of designing the blade cascades of turbomachines, i.e., selecting the geometric pa-
rameters of the cascades providing definite characteristics of the turbomachines, the geometry of blade cascades is dis-
turbed relative to the known geometry of a prototype with the use of its experimental and theoretical aerohydrodyna-
mic characteristics. It is difficult to improve a blade cascade with the use of this method because, in this case, it is
necessary to exhaust a large number of combinations of geometric parameters.

There are two other approaches for solving the indicated problem, which are more efficient. The first ap-
proach combines different methods of solving the inverse problems on the aerodynamics and optimization of the shape
of streamlined bodies in the process of designing them. These methods, having a long history (see, e.g., [1–3] and the
bibliography therein), are being developed further at present [4, 5]. An unquestionable merit of the indicated approach
is its high efficiency, which is attained with the use of the developed analytical description of fluid flows; however, it
is mainly applied to the plane case. The second approach combines different methods of numerical optimization of
blade cascades on the basis of solution of direct problems on fluid flows around them with the use of iteration algo-
rithms for solving hydrogasdynamics problems [6–9]. The advantage of this approach is the possibility of using more
complex models of flows because modern programs for numerical simulation of three-dimensional flows in industrial
plants allow one to calculate the characteristics of a definite-geometry flow in the viscous-fluid approximation with ac-
count for the turbulence effects. However, these calculations are time-consuming, which prevents the use of such algo-
rithms for solving optimization problems. To obviate the indicated difficulties, it is necessary, on the one hand, to
devise new algorithms for calculating fluid flows and modify the existing ones and, on the other, to develop and mod-
ify algorithms for solving optimization aerohydrodynamics problems. This is the challenge of the present work.

The most general formulation of the problem on automatic optimization of the shape of units of a turbo-ma-
chine is as follows:

1) parametric description of the geometry of a blade cascade, which should be correct from the hydrodynam-
ics standpoint in the case where parameters are varied and plausible from the engineering standpoint;

2) determination of the purposeful functional and the functional restrictions for the optimization problem;
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3) calculation of the fluid flow in the flow passage of the turbo-machine, including the fluid flow in the ro-
tating impeller;

4) solution of the extremum problem with selection of an efficient strategy of search for an optimum solution.
Since the prime objective of the present work is comparative analysis of the efficiency of different strategies

for solving problems on optimization of the aerohydrodynamics of blade cascades, it makes sense to consider a maxi-
mum simple problem that, however, will retain the specificity warranting the use of the method developed.

The following simplifications were used in the formulation of the problem:
1. It is assumed that the cross sections of the blades considered are plane, which makes it possible to deter-

mine the outline of a blade in the standard parametric way with the use of the mean line and the thickness function.
We have three varied parameters — the sag of the mean line f, its abscissa xf, and the maximum thickness of the
blade c. The length of the chord of the blade b and the abscissa of its maximum thickness xc are assumed to be con-
stant. The thickness function was selected from the series of NACA blades:

L (x) = c 0.2969x
1 ⁄ 2 − 0.1260x − 0.3516x

2
 + 0.2843x

3
 − 0.1036x

4
 ,

the mean line is parabolic in shape.
2. The viscosity of a fluid, the drag coefficient of the blade, and the nonseparation criterion are determined

using the integral relations for a two-dimensional boundary layer, which were described and substantiated, e.g., in [10,
11]. The ratio between the lift coefficient and the drag coefficient of the blade, i.e., its lift–drag quality, is used as a
functional. The functional restrictions require that the lift coefficient be of definite value and the nonseparation crite-
rion be fulfilled.

3. In accordance with items 1 and 2, the flow in a blade cascade is calculated on the basis of the gasdy-
namics equations for a two-dimensional fluid flow:

Ut + Fx + Gy = 0 ,

U = (ρ, ρu, ρy, e) ,   F = (ρu, p + ρu
2
, ρuy, u (p + e)) ,   G = (ρv, ρuv, p + ρv

2
, v (p + e)) . (1)

The formulation of the boundary problem for system (1) is closed by setting of the impenetrability condition on the
surface of the blade cascade

L (x, β) = 0 , (2)

and the determination of the velocity vector at the left boundary of the computational region and the pressure at the
right boundary of the computational region, and setting of the periodicity conditions at the upper and lower boundaries
outside the blade outline.

4. The extremum problem is solved by the steepest-descent method [12] and the variation-gradient method
formulated in [13] and refined in the present paper. The last-mentioned method is undoubtedly also among the steep-
est-descent methods; it differs from their traditional variant used for solving optimization problems of aerohydrody-
namics by the relations used for calculating the gradient of the functional of the problem.

The gradient of the functional J of the optimization problem has the form

∇β J = JPPβ ,

where P = (u, v, ρ, p) and the variations in the parameters of a fluid flow are determined in accordance with the geo-
metric parameters from the solution of the system of linear differential variation equations:

(ρβ)t + div (ρu)β = 0 ,

((ρu)β)t + ((ρu)β⋅∇) u + ((ρu)⋅∇) uβ + ∇ (pβ) = 0 ,   div [(e + p) u]β = 0 .
(3)

The boundary conditions for system (3) for the blade outline are the relations
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∇Lβ⋅u + ∇L⋅uβ = 0 ,   β = (f, xf, c) (4)

and the variations of the boundary conditions of system (1) at the other boundaries.
In the process of minimization of the functional for the purpose of determining its gradient, the boundary

problem (3)–(4) is solved in each step at constant gasdynamic characteristics of a flow, determined from the solution
of problem (1)–(2). The method proposed is more efficient because the time of solution of problem (3)–(4) is always
smaller than the time of solution of problem (1)–(2). The ratio between the time of calculating the gradient by the
method of one-sided finite differences and the analogous time in the method proposed is equal to (1 + λNβ)/(1 + Nβ),
and, for the central differences increasing the accuracy of calculating the gradient, this time is equal to (1 + λNβ)/
(1 + 2Nβ), where Nβ is the number of varied parameters and λ = T34

 ⁄ T12 is the ratio between the times of solving
problems (3)–(4) and (1)–(2) respectively. At Nβ → ∞, the limiting values to which the rate of calculation of the gra-
dient functional can be increased are equal to 1 ⁄ λ and 2/λ for these cases. The more complex the physical model of
a fluid flow and the corresponding system of differential equations, the smaller the value of λ and the more efficient
the algorithm.

The problem being considered is numerically solved with the use of finite-volume schemes and a 272 × 40
computational grid that is adapted geometrically to the outline of the blades of a cascade in the physical region and is
bunched in the neighborhood of the blades; in the canonical region, this grid is rectangular. The integration with re-
spect to time was carried out by the third-order Runge–Kutta method. This algorithm was tested in detail in [14] in
solving problems on subsonic and transonic flows around airfoil sections.

The optimization problem was formulated in the following way: to construct the shape of a blade cascade,
satisfying the following aerogasdynamic and geometric restrictions

q0 = const ,   cy = cy
0
 ,   F (s) ≥ F0 ,

cmin ≤ c ,   c ≤ cmax ,   b = const , 

for which the goal functional J(α, ββ, g) = cy
 ⁄ cx, g = (q0, cy

0, F0, cmin, cmax) reaches a maximum.
Results of Calculations. Two methods were used for solving the following optimization problems:

1.  J (α, ββ, g) ] max   at   g = (0.3, 0.5, − 3, 4%, 16%) ,

2.  J (α, ββ, g) ] max   at   g = (0.3, 0.8, − 3, 4%, 16%) .

TABLE 1. Values of the Functional J for the Optimization Problem

Problem T Steepest-descent method Variation-gradient method

No. 1 T50 34.4 39.9

No. 1 T100 41.9 45.2

No. 2 T50 20.3 53.7

No. 2 T100 63.0 69.5

TABLE 2. Initial and Optimum Values of Varied Parameters and Corresponding Values of the Lift Coefficient and Functional

Problem T α xf f cx cy

Nos. 1, 2 T0 0.00 0.500 0.000 0.600 0.000

No. 1 T50 1.21 0.483 0.138 0.464 0.491

No. 1 T100 2.48 0.479 0.126 0.455 0.498

No. 2 T50 14.8 0.532 0.187 0.600 0.802

No. 2 T100 15.2 0.486 0.174 0.420 0.797
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The varied parameters are α, f, xf, and c.
The efficiencies of the methods used were compared for one and the same time of solving the optimization

problem TN corresponding to the time of solving problem (1)–(2) N times. In the calculations, it was assumed that N
= 50 and 100. The results of solution of the problems formulated are presented in Table 1. In all the variants consid-
ered, the variation-gradient method allows one to obtain a deeper extremum. The initial and optimum values of the
variables used in the variation-gradient method for different TN are presented in Table 2. It is seen that there is a char-
acteristic (for determination of the optimum shape of a blade) "play" between the angle of attack and the curvature for
decreasing the value of cx at a given restriction on cy, for example, in the time interval from T50 to  T100, α increases
and f decreases.

Figure 1 presents the isolines of the pressures in the computational region, and Fig. 2 shows the shape of a
blade and the distribution of the pressure coefficient over the upper and lower surfaces of the optimum blade cascades
for problem Nos. 1 and 2 at T = T100, obtained by the variation-gradient method.

It should be also noted that, for the purpose of decreasing the time of solving the optimization problem in
both methods, in solving the equations we used, as the initial approximation for the second and all subsequent calcu-
lations, the steady-state fields obtained in the previous optimization step. This allowed us to economize 30% of the
calculation time.

Thus, the method proposed for solving optimization problems on the basis of calculation of the gradient of
their functional with the use of the parameters of a fluid flow varied relative to the design variables determined from
the system of gas-dynamics variation equations allows one to determine the extremum of this functional for a much
shorter time. This effect will be enhanced with increase in the number of varied parameters.

It should be noted that, since the large dependence of the result on the choice of the initial point and the
probability of reduction of the solution to a local extremum, characteristic of gradient methods, are retained in this
case, nondeterminate methods are more preferential for problems with a large number of variables because they allow
one to attain a global extremum. In this case, there is reason to use the approach proposed for rapidly obtaining a pre-

Fig. 1. Pressure field in the interblade region for the profile of a blade cascade,
obtained as a result of solution of problem Nos. 1 (a) and 2 (b) at N = 100.
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liminary solution and refine it then because the use of nongradient methods of determining the extremum of the func-
tional from an arbitrary initial point requires, as a rule, a large number of calculations that are very time consuming
in the case where the equations of motion are solved by iteration methods.

The author is grateful to V. B. Kurzin and A. F. Latypov for useful discussions of the present subjects.
This work was carried out with financial support from the integration project of the Siberian Branch of the

Russian Academy of Sciences No. 27.

NOTATION

a0, dimensional velocity of sound in the incident flow, m/sec; a, velocity of sound relative to a0; b, chord of
a blade; cmin and cmax, lower and upper boundaries of the maximum thickness of the blade, %; cx, drag coefficient;
cy, lift coefficient; cp, pressure coefficient; J, functional of the optimization problem; F(s), form factor; F0, constant
involved in the nonseparation criterion selected; g, vector of restrictions of the optimization problem; q0, modulus of
the incident flow velocity (Mach number of the incident flow in normalized variables); e, total energy of a unit gas
volume normalized to the value of ρ0a0

2; p, pressure normalized to the value of ρ0a0
2; s, length of the arc along the

blade outline; t, time relative to b ⁄ a0; TN, time of solution of the boundary problem N times; u, v, gas-velocity com-
ponents relative to a0; x and y, coordinates directed lengthwise and crosswise of the blade chord related to its length
b; F, G, U, vectors of the gasdynamic parameters of the flow; α, angle of attack; ββ, vector of the geometric parame-
ters; ρ0, density of the incident flow; ρ, density related to ρ0. Subscripts: 0, parameter of the incident flow; min,
minimum; max, maximum.
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